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Application of Stochastic Dual Dynamic
Programming to the Real-Time Dispatch of Storage

under Renewable Supply Uncertainty
Anthony Papavasiliou, Member, IEEE, Yuting Mou, Léopold Cambier, and Damien Scieur

Abstract—This paper presents a multi-stage stochastic pro-
gramming formulation of transmission-constrained economic
dispatch subject to multi-area renewable production uncertainty,
with a focus on optimizing the dispatch of storage in real-time
operations. This problem is resolved using stochastic dual dy-
namic programming. The applicability of the proposed approach
is demonstrated on a realistic case study of the German power
system calibrated against the solar and wind power integration
levels of 2013-2014, with a 24-hour horizon and 15-minute time
step. The value of the stochastic solution relative to the cost of a
deterministic policy amounts to 1.1%, while the value of perfect
foresight relative to the cost of the stochastic programming policy
amounts to 0.8%. The relative performance of various alternative
real-time dispatch policies is analyzed, and the sensitivity of the
results is explored.

Index Terms—storage, renewable energy, stochastic program-
ming, dynamic programming, economic dispatch

I. INTRODUCTION

Day-ahead and real-time power system operations have
become increasingly intricate in recent years due to the
large-scale integration of renewable energy resources. Flexible
resources can be used in order to mitigate the operational
challenges of renewable energy supply. This paper focuses on
the role of storage, specifically pumped hydro resources, in
real-time operations.

Current industry practice for conducting real-time opera-
tions relies on economic dispatch with a relatively limited
look-ahead horizon and a deterministic forecast of renewable
energy supply, which is fairly accurate given the limited look-
ahead of existing dispatch models. In systems with significant
amounts of storage and renewable resources, this practice may
lead to inefficiencies [1]. The deployment of a wide variety
of storage resources, including pumped hydro storage, utility-
scale batteries, flywheels, deferrable demand including electric
vehicle storage, and distributed residential storage, requires a
real-time dispatch procedure which is capable of long-range
look-ahead and potent uncertainty management. Stochastic
programming is suitable for this task. This paper proposes
a real-time economic dispatch procedure based on multi-stage
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stochastic optimization which can be used for the management
of storage resources.

The beneficial role of storage in mitigating renewable supply
variability and uncertainty in short-term (day-ahead and real-
time) operations has been studied extensively in the literature.
Early work on the economic implications of optimizing storage
in short-term operations includes Swider et al. [2] and Tuohy
et al. [3]. The coexistence of renewable supply uncertainty
and storage in short-term operations leads naturally to the
consideration of stochastic programming models, which are
well suited for optimizing under uncertainty in problems over
multiple time periods with significant coupling of operational
decisions over time. This is in direct analogy to the long
tradition of stochastic programming in resolving medium-term
planning models of hydroelectric storage under precipitation
uncertainty, which was pioneered by the early work of Pereira
and Pinto [4].

The majority of the literature on the optimal deployment of
storage in short-term operations relies on two-stage stochastic
unit commitment formulations. Khodayar et al. [5] consider
a two-stage scheduling problem where the first stage corre-
sponds to day-ahead unit commitment and the second stage
involves optimal deployment of storage against realizations of
load forecast errors, wind forecast errors and line and generator
outages. Ponzo et al. [6] also consider a two-stage stochastic
unit commitment model that determines day-ahead commit-
ment and reserve decisions, where the system is deployed in
real time against realized load and wind forecast errors. Deane
et al. [7] use stochastic programming in order to derive weekly
and daily reservoir targets for pumped hydro resources, where
reservoir levels are considered as non-anticipative decisions.
Li et al. [8] consider a stochastic unit commitment model
where conventional units are dispatched in the first stage, and
scenario-dependent unit commitment decisions are determined
in the second stage. Nürnberg and Römisch [9] consider two-
stage stochastic unit commitment with wind uncertainty and
fuel cost uncertainty, and focus on the hourly dispatch of
pumped hydro resources over the duration of a week.

Alternative approaches to managing uncertainty through the
optimal short-term dispatch of storage are also considered in
the literature. Jiang et al. [10] use a two-stage robust optimiza-
tion model for the optimal management of storage in order to
address wind power uncertainty. Wen et al. [11] consider a unit
commitment model for using utility-scale storage in order to
determine post-contingency corrective actions.

In contrast to the previous literature that has been dedicated
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to day-ahead unit commitment models for optimizing the
operation of storage under renewable supply uncertainty, the
literature on multi-stage economic dispatch under uncertainty
in real-time operations is relatively less developed. Lorca and
Sun [12] analyze two-stage robust optimization models for
economic dispatch, and extend this work further in Lorca et
al. [13]. As in the case of the present paper, this work is
motivated by the growing importance of multi-stage real-time
economic dispatch under uncertainty due to the variability
and uncertainty of wind power output. Wang and Hobbs
[14], [15] have also investigated this problem recently, with
a focus on analyzing flexible ramping products and the extent
to which they can approach the ideal outcome of real-time
stochastic optimization. Safta et al. [16] also consider multi-
period stochastic economic dispatch from the point of view
of developing efficient sampling methods of the underlying
uncertainty. Phan and Ghosh [17] develop decomposition
algorithms for a two-stage stochastic optimal power flow
model, where non-linear power flow constraints are considered
explicitly in the model.

An alternative approach to the management of real-time
uncertainty which has been analyzed in the literature is the
optimization of participation factors of flexible resources in
automatic generation control (AGC) in order to alleviate load
and renewable supply uncertainty, while satisfying probabilis-
tic constraints on the operation of the network. Jabr [18]
introduces adjustable robust optimal power flow, and presents
a model in both a static as well as a dynamic setting.
Bienstock et al. [19] analyze real-time optimal power flow
under probabilistic constraints. Lubin et al. [20] extend these
models by developing a solution procedure that accounts for
distributionally robust optimization. Convex formulations of
chance constraints for the case of affine control of AGC are
provided by Summers et al. [21]. Jabr et al. [22] optimize the
utilization of storage-type resources using affinely adjustable
AGC control.

In the backdrop of the aforementioned literature, the present
paper proposes a multi-stage stochastic programming formula-
tion of economic dispatch, with a specific focus on optimizing
the management of storage resources in real-time operations.
A major drawback of the previously cited day-ahead models is
the assumption that uncertainty about the intra-day evolution
of renewable supply uncertainty is revealed at once in the
beginning of the second stage. The alternative of consider-
ing a multi-stage stochastic programming model results in
computational challenges that are overcome in the present
paper through the use of stochastic dual dynamic programming
(SDDP).

The contributions of this paper can be summarized as
follows: (i) The SDDP algorithm has been most successfully
applied in the context of medium-term multi-stage hydrother-
mal scheduling under rainfall uncertainty for handling water
levels of hydro reservoirs [4]. This paper demonstrates its
computational viability for an application of increasing sig-
nificance: short-term multi-stage economic dispatch under re-
newable supply uncertainty for dispatching storage resources.
The analogies of the two problems are striking, however the
applicability of SDDP in the context of multi-stage stochastic

economic dispatch has not been explored in the literature.
(ii) The potential value of scheduling storage in real-time
operations using value functions obtained from multi-stage
stochastic programming is analyzed. The majority of the
existing literature focuses on analyzing the value of storage
using two-stage day-ahead unit commitment models which are
overly optimistic, or economic dispatch models of small scale
or limited look-ahead, whereas storage creates temporal cou-
pling over the entire day. The sensitivity of these findings with
respect to transmission constraints, ramp constraints, and opti-
mization look-ahead is analyzed. (iii) Practical implementation
challenges such that multi-stage stochastic economic dispatch
can be embedded in existing power system and power market
operations are highlighted, and solutions towards overcoming
these challenges are investigated.

The remainder of the paper is organized as follows. Section
II provides an introduction to multi-stage stochastic program-
ming and the SDDP algorithm. Section III casts the real-time
pumped hydro scheduling problem as a multi-stage stochastic
programming problem which can be tackled by SDDP. Section
IV presents a case study focused on the German power
system, while section V discusses aspects related to practical
implementation. Conclusions are drawn and future lines of
research are delineated in section VI.

II. MULTI-STAGE STOCHASTIC LINEAR PROGRAMMING
AND SDDP

A. Multi-Stage Stochastic Linear Programming
This paper considers multi-stage stochastic linear program-

ming problems with discrete time steps t ∈ T = {1, . . . ,H},
where H is the horizon of the problem. Consider a discrete
set of realizations of uncertainty at each time step. Denote Ωt

as the discrete set of outcomes in stage t, and Ω[t] as the set of
possible histories up to stage t. Each ω[t] ∈ Ω[t] has a unique
ancestor A(ω[t]) ∈ Ω[t−1]. The notation is explained further
in section A of the appendix.

In what follows, the standard assumption of serial indepen-
dence in SDDP [23] is adopted. It is assumed that at each stage
the objective function coefficients ct and constraint coefficients
Wt are deterministic parameters, whereas the right-hand side
parameters ht,ωt

and the constraint coefficients Tt,ωt
are

random. Define decision variables that depend on the history
of realizations up to stage t, xt,ω[t]

, where ω[t] ∈ Ω[t]. Serial in-
dependence implies that it is possible to define, for each stage
t, a probability measure pt,ωt

for each outcome ωt ∈ Ωt, from
which one can recursively compute pt,ω[t]

= pt−1,A(ω[t]) ·pt,ωt

with p1,ω1
= p1,ω[1]

= 1. The following multi-stage stochastic
linear program in extended form can then be defined:

min
x

H∑
t=1

∑
ω[t]∈Ω[t]

pt,ω[t]
cTt xt,ω[t]

Tt,ωt
xt−1,A(ω[t]) +Wtxt,ω[t]

= ht,ωt
, t ∈ T, ω[t] ∈ Ω[t]

xt,ω[t]
≥ 0, t ∈ T, ω[t] ∈ Ω[t]

B. Nested L-Shaped Decomposition Subproblem
The SDDP algorithm decomposes the above problem, which

is intractable in extended form, to a collection of subproblems,
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one for each time stage t ∈ T and for each outcome k ∈
Ωt. Each of these subproblems is referred to as a nested L-
shaped decomposition subproblem (NLDS) [23]. Exploiting the
fact that the value functions of multi-stage stochastic linear
programs are piecewise affine functions, the NLDS for stage
t and outcome k can be expressed as

NLDSt,k : min
x
cTt x+ Ṽt(x) (1)

Wtx = ht,k − Tt,kx̂t−1 (2)
x ≥ 0 (3)

where Ṽt(x) is a piecewise affine convex function of x which
approximates the expected cost-to-go as a function of the
decisions x made in stage t and for outcome k. Since Ṽt(x)
is a piecewise affine convex function, NLDSt,k is a linear
program that can be solved efficiently. Note that x̂t−1 is a
trial decision made in stage t − 1, which is an input, not a
decision variable, for NLDSt,k. Feasibility cuts are ignored,
since the economic dispatch problem that is presented in the
next section includes load shedding decision variables which
imply that NLDS is always feasible for any x.

C. Lattice

Uncertainty is represented in the present implementation of
the SDDP algorithm by a lattice, which is a graphical descrip-
tion of a discrete Markov process1. Each stage t consists of a
set of nodes Ωt. Each node k ∈ Ωt corresponds to a realization
ht,k of the random vector ht,ωt

and a realization Tt,k of the
random matrix Tt,ωt

. Since serial independence is assumed,
the specification of the uncertainty model can be completed by
associating with each node (t, k) a probability of occurrence
pt,k, which is independent of the history of realizations up to
stage t− 1.

The linear program NLDSt,k defined in Eqs. (1) - (3) is
stored at each node (t, k) of the lattice. Serial independence
implies that each node k ∈ Ωt stores an identical copy of the
value function Ṽ (x) of equation (1). In general, the MATLAB
toolbox that is presented in the following section can also
handle random objective function coefficients ct and random
constraint matrices Wt. The lattice can generally represent
Markov processes whereby the user defines the realization of
the random parameter2 ξTt = (cTt , h

T
t , vec(Tt), vec(Wt)), and

the transition probability from any node in stage t− 1 to any
node in stage t.

The lattice is the core of the FAST toolbox presented in
the next section. It stores the description of the uncertainty
model, and can be used for simulating, not only the SDDP
policy described by NLDSt,k, but any heuristic policy that
can be described by a linear program.

1This assumption, although restrictive, can accommodate a large class of
practically useful discrete time stochastic processes, including autoregressive
moving average models [24]. On the upside, this assumption yields compu-
tational gains by allowing the sharing of dual multipliers for the generation
of optimality cuts. This is illustrated in Fig. 7 in the appendix.

2The operator vec(·) applied to a matrix expands the columns of the matrix
to a vector, i.e. vec(A) = (AT

·,1, . . . , A
T
·,n) where n is the number of

columns of A and A·,j is the j-th column of the matrix.

D. FAST Toolbox

FAST is a MATLAB open-source toolbox developed by the
authors which can be used for solving multi-stage stochas-
tic linear programming problems with SDDP. The toolbox
can also be used for simulating perfect foresight policies,
as well as heuristic policies that can be expressed through
linear programming. The toolbox is described in detail in the
following link: https://web.stanford.edu/∼lcambier/fast/. This
section briefly covers the features that are relevant to the model
implemented in the paper.

The definition of a stochastic program in FAST requires
(i) the description of the NLDS (which can be done as
in a high-level mathematical programming language, as op-
posed to manually entering the constraint matrix, objective
function coefficients, and right-hand side parameters of the
linear program), (ii) the description of the lattice, and (iii) the
description of user-defined settings related to the behavior and
convergence of the algorithm. The NLDS and the lattice are
described in sections II-B and II-C respectively, this section
describes the settings that control convergence.

The SDDP algorithm proceeds by iterating between forward
and backward passes. The role of forward passes is to generate
bounds and trial decisions, while backward passes generate
optimality cuts that approximate the value function at each
stage. The algorithm is described in detail by Pereira and Pinto
[4]. The toolbox is compatible with a variety of commercial
solvers, including CPLEX and Gurobi.

The forward pass proceeds by generating a user-defined
number of Monte Carlo samples, M . Each Monte Carlo
sample generates a realization of the random parameters ht,ωt

and Tt,ωt over the entire horizon of the problem. This results
in a trajectory of trial decisions, x̂(i) = (x̂

(i)
1 , . . . , x̂

(i)
H ) (which

are obtained by solving the NLDS of each stage t and the
realization of the Monte Carlo sample) as well as an associated
sample cost over the entire horizon, zi (since the sequence of
decisions x̂(i) is a feasible, not necessarily optimal, reaction to
the realized sample of uncertainty). A statistical upper bound
can then be obtained by the sample average z̄ =

∑M
i=1 zi
M .

Within FAST, the user can periodically run a large number of
forward passes in order to obtain an accurate estimate of the
upper bound.

The backward pass generates optimality cuts that approx-
imate the value function Ṽt(x) around the trial points x̂

(i)
t

generated by the forward pass. These approximations (which
can be shown to be global under-estimators of the true value
function) are generated by solving each NLDS and exploiting
the dual optimal multipliers, similarly to the standard L-
shaped method [25]. Since the approximations Ṽt(·) are under-
approximations of the true value functions, the solution of
NLDS1 furnishes a lower bound z. The optimality cuts
generated after the algorithm has converged can be used
for simulating the resulting policy. FAST can also prune
optimality cuts in order to keep the size of each NLDS
tractable.

Various convergence criteria can be selected within FAST,
including a minimum and maximum number of iterations, the

https://web.stanford.edu/~lcambier/fast/
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Fig. 1: The scatter plot of wind and solar production day-ahead
forecasts versus historical forecast error in Germany for 2013
and 2014.

classical convergence criterion3 of Pereira and Pinto [4], as
well as a small standard deviation criterion according to which
the algorithm terminates only when the standard deviation of
the mean cost z̄ is sufficiently low, relative to the lower bound
z. The convergence criteria of SDDP are discussed in detail
by De-Mello et al. [27].

III. MODEL DESCRIPTION

Since the focus of the present paper is on real-time dispatch,
unit commitment decisions are assumed to be fixed. The
economic dispatch model presented in this section specifi-
cally focuses on the management of pumped hydro resources
throughout the day.

A. Renewable Supply Model

Despite the assumption of serial independence, the multi-
stage stochastic linear programming problem described in
section II-A can be used to describe a rich family of stochastic
processes [24], [28]. In order to motivate the approach adopted
in this paper, consider first how a first-order autoregressive
process AR(1) would be modeled according to constraints
(2). This paper focuses in modeling renewable supply in the
presence of forecast errors, which can be expressed as follows:

ret = c+ φ · ret−1 + εt,

pt = RFt + ret

where c is the constant term of the AR(1) model, φ is
the autoregressive coefficient, εt are independent identically
distributed normal variables, ret is the forecast error which

3The convergence criterion of Pereira and Pinto [4] stipulates that the
algorithm should terminate when the lower bound z lies within the interval

[z̄− 2σ, z̄+ 2σ], where σ =

√∑M
i=1(zi−z̄)2

M2 is an estimate of the standard
deviation of the sample average cost. Effectively, the termination criterion
requires that the lower bound lie within the 95% confidence interval of the
upper bound, however this may lead to premature convergence [26].

is modeled as an AR(1) process, pt is the renewable energy
production in stage t, and RFt is the forecast production in
stage t. The idea is to include the forecast error re in the
state vector x of equation (2), and to model the AR noise εt
as the serially independent stochastic input ht,ωt

of equation
(2). Whereas it might seem more natural to model forecast
error directly as the random parameter, instead of representing
it as a state variable, in this way it is possible to represent
autoregressive processes while respecting serial independence.

There are two drawbacks with this approach, which motivate
the alternative modeling approach adopted in this paper. The
first drawback is that renewable production becomes negative4.
The second drawback is that the forecast error under an AR(1)
model would have constant variance, whereas experimental
evidence suggests that the variance of forecast errors increases
as the renewable forecasts increase, as shown in Fig. 1.

Cabral [29] recently proposed a multiplicative autoregres-
sive model for representing inflow uncertainty in hydrothermal
planning models, which accounts for temporal correlations in
the inflow process, while maintaining the non-negativity of
the process. This overcomes the first drawback mentioned in
the previous paragraph. In order to overcome the second draw-
back, this paper proposes that the multiplicative autoregressive
model of Cabral be used in order to model the ratio of forecast
error to renewable supply forecast, instead of the renewable
supply process.

Denote the ratio of renewable production realizations and
day-ahead forecasts as yt = pt/RFt. Then the autoregressive
multiplicative model of Cabral can be used for modeling the
ratio yt as follows:

yt+1 = (c+ φ · yt) · ηt (4)
pt = RFt · yt (5)

where ηt are independent, identically distributed.
In order to generate a lattice for SDDP, the random param-

eter ηt is discretized at every time stage. In this paper, the
discretization is based on discretizing the normal distribution
into ten evenly spaced quantiles:

ηt,k = µt + σt · Φ−1(
k

10
− 0.05)

where µt and σt are the mean and standard deviation of the
estimated noise in stage t respectively, Φ is the cumulative
distribution function of the standard normal distribution, and
ηt,k is the value of the noise in node k of stage t. Fig.
2 compares the probability density function obtained from
historical data with the probability density function produced
by the proposed stochastic model. The quality of the model
is further validated by comparing the energy score5 of the
multiplicative first-order autoregressive model to the energy
score of an additive first-order autoregressive model over 100
days of data. The multiplicative model employed in this paper

4Alternatively, one could impose non-negativity on pt, however then one
would have to include slack variables with high penalties in order to ensure
that the error re remains in a range such that pt ≥ 0, which would interfere
with the optimality cuts generated by the SDDP algorithm.

5The energy score is a proper (i.e., a perfect forecast will result in the best
score), negatively-oriented (i.e., lower is better) score that quantifies both the
skill (accuracy) and sharpness (spread) of a scenario set [30].
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Fig. 2: Histogram of historical renewable supply observations
(left panel) and modeled renewable supply (right panel).

achieves an average energy score of 0.26, and outperforms the
additive model, the average energy score of which amounts to
0.46.

B. Stochastic Multi-Period Economic Dispatch

This section formulates the multi-stage stochastic economic
dispatch problem, by describing the NLDS, i.e. the objective
function (1) and constraints (2) for a given stage t ∈ T and
history ω[t] ∈ Ω[t]. The t and ω[t] indices are dropped in order
to keep the notation concise. The notation is described in detail
in section B of the appendix.

The objective is to minimize the expected cost of power
production and load shedding:

1

4
(
∑
n∈N

V OLL · lsn +
∑
g∈G

cg)

where G is the set of generators, N is the set of buses, lsn
is the load shedding in bus n, and cg is the cost of generator
g. The 0.25 coefficient in the objective function is due to the
assumed time resolution of 15 minutes for each time step.

Production cost is defined as a piecewise affine function:

cg ≥ FCg · (Ag,m · Ug +Bg,m · pg), g ∈ G,m = 1, . . . , 3

where pg is the power production of a generator, FCg is the
fuel cost of a generator, Ag,m and Bg,m are the intercept and
slope that describe segment m of the heat rate curve of a
generator, and Ug is a binary variable indicating whether a
generator has been committed or not. Note that Ug is deter-
mined in the day-ahead time frame, and is a fixed parameter
in the real-time dispatch.

The transmission network is represented as a directed graph
(N,K), where K is the set of transmission lines. At each
node of the network, the following power balance constraint
is imposed:∑

l∈Ln

Dl +
∑

g∈PHn

pdg +
∑

k∈(n,·)

fk +
∑
n∈N

psn =
∑
g∈Gn

pg +

∑
g∈PHn

ppg +
∑

g∈GRn

RFg · yg + lsn +
∑

k∈(·,n)

fk, n ∈ N

where Ln is the set of loads in location n, PHn is the set of
pumped hydro units in location n, Gn is the set of generators
in location n, GRn is the set of renewable resources in location
n, (n, ·) is the set of lines whose origin is n, and (·, n) is the

set of lines whose destination is n, Dl is the load of consumer
l, pdg is the pumping demand of pumped hydro unit g, ppg
is the pumping supply of pumped hydro unit g, fk is the flow
on line k, psn is amount of production shedding in node n,
RFg is the renewable energy forecast of renewable generator
g, and yg is the ratio of renewable production to renewable
forecast error for renewable generator g.

Power flow equations6 are expressed using a linearized
lossless model of the transmission network:

θhub = 0

fk = Bk · (θm − θn), k = (m,n) ∈ K

where θn is the angle of bus n (with the hub node assumed
to be the bus angle reference node) and Bk is the susceptance
of line k.

Power flows are limited as follows:

−TCk ≤ fk ≤ TCk, k ∈ K

where TCk is the flow limit of line k.
The dynamics of pumped hydro units are expressed as

follows:

sg = sg,t−1 + 0.25 · (Γd
g · pdg −

ppg
Γp
g

), g ∈ PH

where sg is the stored energy of pumped hydro unit g, Γd
g

is the pumping efficiency of unit g, and Γp
g is the production

efficiency of unit g.
The capacity constraints of conventional and pumped hydro

units are expressed as follows:

pdg ≤ DMaxg, g ∈ PH
ppg ≤ PMaxg, g ∈ PH
PMin · Ug ≤ pg ≤ PMaxg · Ug, g ∈ G

where DMaxg is the pumping capacity of pumped hydro
unit g, PMaxg is the production capacity of pumped hydro
or conventional generator g, and PMing is the technical
minimum of conventional generator g.

The ramp rate constraints of conventional units are ex-
pressed as follows:

pg − pg,t−1 ≤ RUg · Ug +MTLg · (1− Ug,t−1), g ∈ G
pg,t−1 − pg ≤ RDg · Ug +MTLg · (1− Ug), g ∈ G

where RUg is the 15-minute ramp-up rate of generator g, RDg

is the 15-minute ramp-down rate, and MTLg is the maximum
transition limit of generator g. The maximum transition limit
is the power output of a generator after being turned on, or
before being turned off.

6Although mathematically equivalent to a formulation which uses power
transfer distribution factors (PTDFs), the bus angle formulation employed in
this paper appears to achieve faster convergence for the case study described
in section IV. In particular, whereas the SDDP algorithm with a bus angle
formulation converges in 4.3 hours, the same algorithm requires 16.4 hours
to converge with a PTDF formulation. This may be due to the fact that the
PTDF formulation involves a dense constraint matrix, which can impact the
speed of matrix inversion when the NLDS are being resolved in the course
of the SDDP algorithm.
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The following constraints impose bounds on load and pro-
duction shedding:

lsn ≤
∑
l∈Ln

Dl, n ∈ N

psn ≤
∑
g∈Gn

pg +
∑

g∈GRn

RFg · yg, n ∈ N

The dynamics of forecast errors can be described by equa-
tion (4). Finally, the following non-negativity constraints are
required:

lsn, psn, sg, pdg, ppg ≥ 0, n ∈ N, g ∈ PS

IV. CASE STUDY

This section presents a case study of the German system.
Germany is chosen as the most relevant example within
Europe, due to its leading position in the integration of wind
and solar power. The rapid growth of renewable energy supply
in Germany is evidenced by the evolution of installed capacity
in recent years. The installed capacity of solar power evolved
from 36.3 GW in 2013 to 39.8 GW in 2015, while the installed
capacity of wind power evolved from 34.0 GW in 2013 to
44.5 GW in 2015 [source: German Federal Ministry of Eco-
nomic Affairs and Energy]. The ratio of historically observed
renewable energy production to total energy production for
the interval of the data which was used in the study (January
2013 - December 2014) is 18.7%. The installed capacity
of conventional generators, which totals 103.5 GW, can be
broken down as follows: nuclear (11.966 GW), lignite (20.694
GW), coal (25.488 GW), gas (35.751 GW), oil (2.204 GW),
biomass (7.179 GW), and waste (0.188 GW) [source: Euro-
pean Network of Transmission System Operators (ENTSO-E)
transparency platform]. The peak load of the system in 2014
was 73.218 GW [source: European Network of Transmission
System Operators (ENTSO-E) transparency platform]. The
pumped hydro storage and pumping capacity amounts to 5.867
GW, while the energy storage capacity of pumped hydro units
in Germany amounts to 38 GWh [source: European Energy
Exchange (EEX) transparency platform].

The technical specifications of 292 conventional units are
available from a commercial database. Reserve requirements
for German primary, secondary and tertiary reserve are ob-
tained from regelleistung.net. Load and import data are fixed to
their historical values, which are obtained from the ENTSO-E
transparency platform. Pumped hydro resources have a round-
trip efficiency of 76.5%. It is assumed that fast response units
are available at every bus. The marginal cost of these units
is assumed to be piecewise constant, and ranges from 100
e/MWh up to 500 e/MWh. The model consists of 228 buses
and 312 lines.

A. System Settings

The case study is conducted in two steps: (i) A unit com-
mitment problem is solved with a weekly horizon. The weekly
horizon prevents boundary effects in the unit commitment
decision, and is justified by the fact that the German system

Nodes Samples Iter. Run time Gap Cost
K M I (hrs) (%) (103 e)
4 50 10 2.3 1.8 18583

10 50 10 4.3 2.8 18545
20 50 10 10.5 3.1 18565
100 5 10 4.6 3.2 18733

TABLE I: Performance comparison among different configu-
rations of SDDP settings. The performances is evaluated using
100 samples on a 100-node lattice.

conducts a weekly reserve capacity auction. The unit commit-
ment model is implemented with an hourly time step, and is
populated with data for the German system from September
22, 2014 until September 28, 2014. The model accounts for
primary, secondary and tertiary reserve requirements given a
deterministic forecast of renewable energy production. This
centralized unit commitment model approximates the sequen-
tial clearing of reserve capacity followed by the day-ahead
exchange of power in the Central Western European day-
ahead power exchange [31]. Interactions of Germany with
neighboring zones [32] are not accounted for in this paper,
in order to focus on the management of real-time renewable
supply uncertainty. (ii) Once unit commitment decisions are
fixed, the economic dispatch model is solved for the middle
of the week (Thursday) with a horizon of 24 hours and a time
step of 15 minutes.

The lattice of the renewable supply stochastic process is dis-
cretized in 10 levels. Thus, the multi-stage stochastic economic
dispatch lattice consists of 96 stages and 10 nodes per stage.
The renewable production model is calibrated using renewable
supply data sourced from the ENTSO-E transparency platform
for 2013 and 2014. Renewable production is distributed in
each region according to its average historical profile. The
sensitivity of the solution to spatial correlations of renewable
supply is discussed in section IV-D.

The choice of using 10 nodes per stage strikes an acceptable
balance between run time, convergence of the solution, and
accuracy of the stochastic model. Table I presents the run time
and performance of various configurations of SDDP in terms
of lattice size and the number of samples used in the forward
pass, for a fixed number of forward-backward iterations of
the algorithm. The performance of each solution is evaluated
using 100 samples on a 100-node lattice. One observes that
the 4-node instance performs well in terms of optimality gap,
however the representation of uncertainty is coarse-grained,
and results in inferior cost performance. The 20-node and
100-node instances better represent uncertainty, however they
do not achieve as good an optimality gap as the 10-node
instance. Moreover, the run time of the 20-node instance with
50 forward samples is increased significantly. It is worth noting
that one encounters a wide range of SDDP settings in the
literature [4], [28], [33], [27] (node counts K ranging from 2
to 100, iterations I ranging from 5 to 3000, forward samples
M ranging from 1 to 50, horizon steps H ranging from 5 to
120), and that the choice of these setting interacts with the
convergence of the algorithm.

Three policies are compared: (i) a wait-and-see policy which
manages pumped hydro resources by perfectly anticipating the

regelleistung.net
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Slow unit cost Fast-start cost Total cost σ total cost Fast-start energy Excess energy
(103 e) (103 e) (103 e) (103 e) (MWh) (MWh)

Perfect Foresight 17380 850 18231 291 7204 1809
Stochastic Programming 17423 955 18378 305 7511 1855

Deterministic 17373 1221 18594 350 8688 1879
Perfect Foresight (3000) 17914 9637 27551 2626 3212 3823

Stochastic Programming (3000) 18201 10489 28690 2674 3496 5406
Deterministic (3000) 17924 13652 31575 3048 4551 4498

TABLE II: Performance of perfect foresight, stochastic programming, and the deterministic policy. All values are per day. The
cases indicated by ‘(3000)’ correspond to setting the marginal cost of fast-start units to 3000 e/MWh.
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Fig. 3: The evolution of lower and upper bounds of the SDDP
algorithm.

evolution of renewable supply over the day; (ii) the stochastic
programming policy obtained by SDDP; and (iii) a determinis-
tic equivalent dispatch, whereby the pumped hydro schedule is
fixed to the output of the day-ahead unit commitment model,
and conventional thermal units are dispatched at minimum cost
in real time while respecting transmission constraints.

Fig. 3 presents the evolution of the bounds generated by the
SDDP algorithm when solving for the stochastic programming
policy. The lower bound is indicated by the dotted line. The
solid line indicates the estimate of the upper bound, and it
is enveloped by its 67% and 95% confidence intervals. Each
NLDS of the problem consists of 1371 variables and 3560
constraints. The reported results are based on the settings
indicated in the second row of table I.

B. Performance Comparison

The average cost results are shown in table II over 100
samples. The standard deviation of the average cost estimator7

is also reported, in order to verify that the reported cost
differences are statistically significant. The table also reports
the results of a model whereby the marginal cost of the fast-
start units is set at 3000 e/MWh, so that these units are only
used as a solution of last resort. These cases are indicated in
the last three rows of the table.

For the model with all constraints, the stochastic program-
ming policy results in benefits that amount to 1.2% of the
deterministic dispatch cost, and perfect foresight results in

7The standard deviation is indicated by σ in table II, and is defined in
footnote 3. The superior performance of the stochastic programming policy
with respect to deterministic dispatch is verified with a confidence level of
94.5%.
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Fig. 4: The percentile of the reservoir level for the stochastic
programming policy, and the reservoir schedule of the deter-
ministic policy.

benefits that amount to 0.8% of the stochastic programming
cost. The perfect foresight policy utilizes fast-start units,
and, although for a higher penalty the utilization of these
units is decreased, it cannot be eliminated completely due
to re-dispatch in real time which is necessary for relieving
transmission constraints.

Fig. 4 presents the 10th, 50th and 90th percentiles of the
reservoir levels for the stochastic programming policy, as well
as the fixed reservoir schedule of the deterministic policy. The
wide spread of the 10th and 90th percentile implies that the
pumped hydro schedule can vary significantly in the stochastic
programming policy. The deterministic schedule closely tracks
the 50th percentile of the stochastic programming policy. The
deterministic policy will pump mostly in the night hours and
to a lesser extent during the peak of solar production around
noon, and will produce in the morning and evening load peaks.
Fig. 5 presents the dispatch of pumped hydro resources under
the stochastic programming policy for the case of over- and
under-forecasting renewable power supply. In the case where
realized production exceeds the forecast during the morning
load peak, the stochastic policy produces more aggressively,
in order to create space in the reservoir for the peak solar
production, which exceeds the day-ahead forecast. By contrast,
in the case where the forecast exceeds the realized production,
the stochastic programming policy serves less of the morning
peak load than the deterministic policy through pumped hydro
resources, and pumps more aggressively during the night. This
is explained by the anticipation of an unfavorable renewable
production outcome in the afternoon, which implies that the
water in the reservoir is better used for serving the evening
load peak.
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Fig. 5: The dispatch of pumped hydro under the stochastic
programming policy in the case where (i) realized production
exceeds the forecast (top 2 panels) and (ii) the forecast exceeds
realized production (lower 2 panels).
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Fig. 6: The locational marginal prices of the stochastic and
deterministic dispatch policies. The boxes include the ob-
servations within the 25% and 75% quantiles, the crosses
correspond to outliers.

By comparing the base case results of table II to the case
where the marginal cost of emergency resources is set at a
very high value (3000 e/MWh), one notes that the results are
sensitive to the cost of activation of fast-start resources for all
policies. It is interesting to note that all policies are forced to
resort to fast-start resources in real time to some extent, due
to binding transmission constraints.

An optimal dispatch policy will tend to carry water in the

Total cost St. dev.
(103 e) (103 e)

Foresight (No Transmission) 14797 97
Stochastic (No Transmission) 14828 100

Deterministic (No Transmission) 14867 105
Lookahead 1-step (No Transmission) 14865 105
Stochastic Hydro (No Transmission) 14830 101
Foresight (No Ramp/Transmission) 14796 97
Stochastic (No Ramp/Transmission) 14828 100

Deterministic (No Ramp/Transmission) 14856 105

TABLE III: Daily cost performance for the case where trans-
mission and ramping constraints are dropped.

reservoirs up to the level where its marginal value equals the
expected future cost of production. This will tend to align
marginal prices over all hours of the day, all outcomes and
all locations. This is demonstrated in the box plots of Fig. 6,
which present the distribution of LMPs for both the stochastic
policy as well as the deterministic dispatch.

C. Effect of Transmission and Ramping

This section analyzes the importance of transmission con-
straints and ramps in the performance of each policy. In order
to isolate the effect of transmission and ramping, the models
without transmission constraints are re-run first (in order to
capture the effect of transmission constraints) and then the
models without transmission constraints and without ramp
constraints are re-run (in order to isolate the incremental effect
of ramp constraints). The results are presented in table III.

By comparing the results of tables II and III, it can be
observed that transmission constraints have a major impact
on the results. In the case without transmission constraints, the
benefits of stochastic programming over deterministic dispatch
amount to 0.3% of the cost of deterministic dispatch, while
the benefits of perfect foresight over stochastic programming
amount to 0.2% of the cost of stochastic programming.

The motivation for analyzing the effect of ramping sepa-
rately is the recent introduction of flexible ramp products8

in various US markets, including the Midwest ISO [34] and
the California ISO [35]. The results of table III suggest that
the incremental cost impact of ramp constraints is negligible.
In addition, a one-step deterministic lookahead dispatch is
analyzed, which is inspired by multi-period look-ahead in US
real-time markets that are intended to better accommodate
ramp capacity scarcity [34]. This policy is referred to as
‘Lookahead 1-step’ in table III. Compared to the deterministic
dispatch, this policy exhibits a minor benefit. In fact, what is
more crucial than dispatching conventional thermal units with
a one-step lookahead is to dispatch pumped hydro resources
by anticipating the multi-period (beyond one step) evolution
of uncertainty over the day. This is shown in table III by
calculating the cost of ‘Stochastic Hydro’: a policy that uses
the pumped hydro schedule of the stochastic programming
solution, and dispatches conventional resources without a one-
step look ahead. As shown in the table, this policy achieves

8The goal of flexible ramp products is to ensure that the system is optimally
pre-positioned in anticipation of multi-period and potentially uncertain ramps,
without undermining the provision of other ancillary service products, and
while ensuring that flexible capacity is priced properly.
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almost the same cost as the stochastic programming solution.
This implies that dispatching pumped hydro resources while
being mindful of the multi-period evolution of the system is
more crucial than dispatching conventional resources with a
short look-ahead in order to prevent shortage in ramp capacity.
This observation was not obvious at the outset of the study.

D. Spatial Correlations

Renewable energy production in Germany exhibits strong
spatial correlations [36]. Statistical analysis reveals strong pos-
itive correlation with a certain lag between all pairs of the four
regions operated by German TSOs. The lagged correlations
indicate weather fronts that are moving from one part of
the country to the other, and resulting in similar renewable
production patterns with a difference of a few hours.

Two common approaches for accounting for spatial corre-
lation in the SDDP hydrothermal planning literature are (i) to
assume serial independence, and use observations of historical
realizations of inflows for populating nodes of equal likelihood
in the SDDP lattice [37], [38], and (ii) to fit an autoregressive
model for each region based on historical data, estimate
the pairwise correlation of the residual noise of each region
through historical data, and estimate the Cholesky factorization
of the resulting correlation matrix [33]. The resulting Cholesky
factor is then applied to a random sample of multi-dimensional
white noise, where each sample of the error corresponds to a
node of equal likelihood in the SDDP lattice.

Each of these methods has evident shortcomings. The first
approach tends to over-fit based on historical data. The second
method attempts to estimate a very large number of correlation
parameters based on very few data points, and is then using
an extremely sparse support to estimate a high-dimensional
process. Therefore, in attempting to model spatial correlations
the modeler needs to ‘pick his/her poison’. In order to test for
the sensitivity of the solution to the modeling of spatial cor-
relations, the first alternative method for modeling uncertainty
mentioned in the previous paragraph has been implemented in
this paper. In particular, historical data from January 2013 until
December 2014 has been used in order to identify the 10 days
in the data set which were closest to the day-ahead forecast of
the date of the case study (September 25, 2014). The data has
then been used in order to draw samples of the forecast error
for each of the four regions operated by the different German
TSOs (data for solar and wind forecast errors are only available
by TSO operating region), and the forecast error has been
spread evenly among the buses of each region. The 10 samples
of forecast error data have been used as the 10 nodes of the
SDDP lattice, with each node assumed to be occurring with
equal probability. Presumably, this data manipulation captures
spatial correlation, although, as argued earlier, it tends to over-
fit the lattice to historical observations. The resulting SDDP
model is in fact computationally easier to solve, because the
state space no longer includes past realizations of forecast
errors. The L1-norm of the change in the value functions over
time stages averages at 7.5%, and is therefore non-negligible,
but remains below 10% for all time stages. The comparison
of the long-run cost performance of different approaches for

NLDS NLDS Run time
variables constraints (hr)

Full 1371 3560 4.3
No Transmission 832 2272 3.3

No Ramp/Transmission 832 1880 2.8

TABLE IV: The size of the NLDS and the run time of the
SDDP algorithm for the models reported in section IV.

modeling spatial correlations would require rolling planning
conditional on day-ahead forecasts, and is out of the scope of
the present study.

In conclusion, approaches towards capturing spatial cor-
relation which have been proposed in the literature can be
implemented in the framework of the model proposed in
this paper, and may result in non-negligible impacts on the
obtained value functions. However, these methods involve
inevitable modeling compromises in order to overcome the
curse of dimensionality.

V. PRACTICAL IMPLEMENTATION

A. Off-line Computation of Value Functions

The run time of the SDDP algorithm on a laptop with a 4-
core i7-4720HQ processor and 8 GB of RAM using the FAST
toolbox and Gurobi is shown in table IV. The result of the
SDDP algorithm is a dispatch policy that is contingent on the
realization of uncertainty for the following day. Therefore, one
can argue that the run time is acceptable since the stochastic
programming policy can be solved for in the day-ahead time
frame by the operator of the pumped hydro resources, and
stored in memory for the following day.

The dependence of the SDDP run time on model and
solver settings can be deduced as follows. Denote M as the
number of Monte Carlo samples employed in the forward
pass of the algorithm, H as the number of stages, K as the
number of nodes per stage (assumed constant over stages),
and I as the number of forward-backward iterations of the
algorithm (assuming a fixed number of iterations), V as the
number of variables in an NLDS, and C as the number
of constraints. The execution of the algorithm for a single
iteration requires solving H ·M problems of the size of NLDS
in a forward pass, and K · (H − 1) · M such problems in
a backward pass. Over I iterations, one solves a total of
(K ·(H−1) ·M+H ·M) ·I NLDS problems. Assuming that
the running time of the backward passes dominates that of the
forward passes, which is reasonable for large M , the overall
run time of the algorithm is approximately proportional to the
number of nodes per stage K, the number of iterations I , the
number of Monte Carlo samples M , and the number of stages
H .

In case pumped hydro resources are scheduled on a weekly
or even monthly basis, the approach presented in this paper
remains useful. A pumped hydro scheduling problem with a
horizon of a few weeks or months and coarse-grained time
steps can be used for deriving pumped hydro storage value
functions. These derived value functions can then be used as
input for the real-time multi-stage dispatch problem presented
in this paper.
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B. On-line Decision Making

Real-time operations are governed by tight run time re-
quirements. Economic dispatch decisions may be updated as
frequently as every five minutes, therefore economic dispatch
software should be capable of providing real-time decision
support within a matter of a few seconds. SDDP can be run off-
line to compute value functions, and these value functions can
be used in real-time economic dispatch software for optimally
deploying storage. The average run time required for solving
NLDS and obtaining on-line dispatch decisions for the ex-
periments presented in section IV amounts to 0.027 seconds,
which is clearly acceptable from an operational perspective.

The value functions obtained from the SDDP algorithm can
be used for real-time decision making even though the realized
uncertainty does not correspond to any realization of the
stochastic process in the stochastic programming formulation.
For example, the deployment of pumped hydro for the realized
rainfall on the day of the case study (September 25, 2014)
was computed in 3.4 seconds (i.e. 0.035 seconds per stage).
This should be contrasted to typical scenario tree formulations,
where the solution of the multi-stage stochastic program is a
not a value function, but instead a decision which is contingent
on the state of the world. In such cases, it is unclear how the
decision maker should proceed if the realized state of the world
does not correspond to any of the paths of the scenario tree.

C. Integration with Market Operations

The value of the stochastic solution relative to the deter-
ministic alternative considered in this study suggests that the
adaptive management of pumped-hydro resources in intra-day
and real-time markets can deliver substantial benefits. This
raises an interesting issue related to incentives: who should
decide about the real-time dispatch of storage resources?

In a risk-neutral setting, a multi-stage stochastic compet-
itive equilibrium coincides with the optimal solution of a
coordinated multi-stage stochastic scheduling problem [39].
In theory, therefore, risk-neutral agents who correctly antici-
pate the evolution of uncertainty can adjust the valuation of
stored energy so as to reproduce the dispatch of a benevolent
centralized planner. In practice, this notion stumbles upon the
exercise of market power, the fact that agents are typically not
risk neutral, and the fact that agents may not share identical
views about the future.

From a market power mitigation point of view, the major
challenge of managing pumped storage resources in real time
is the fact that these resources are not characterized by an
intrinsic marginal cost, but instead by an opportunity cost of
stored energy which depends on beliefs about the future evolu-
tion of real-time prices. Therefore, a decentralized operation of
storage would create challenges in terms of market monitoring
since it would not be possible for the regulator to distinguish
between true scarcity and the exercise of market power9.
This concern is especially relevant in systems with ramping
scarcity caused by the integration of renewable resources
[41], [42]. One extreme (the one investigated in the present

9The impact of storage ownership structure on the exercise of market power
has been analyzed by Sioshansi [40].

study which, according to data from European markets [31],
is not too far from reality for certain systems) would be
to simply fix pumped hydro resources to their day-ahead
schedule. At the same time, the present study demonstrates that
substantial benefits can be achieved from dispatching pumped
hydro resources adaptively. On another extreme, therefore,
one could envision the system operator dispatching pumped
hydro resources centrally, since the operator would be natu-
rally positioned to collect all the information necessary for
dispatching pumped hydro resources optimally. The results of
the ‘Stochastic Hydro’ policy in table III suggest that this
solution would already deliver the majority of the potential
benefits of multi-period stochastic economic dispatch.

A less centralized approach whereby market agents bid
their opportunity cost for pumped hydro resources in real-time
markets can still benefit from the SDDP approach proposed
in this paper. The value functions obtained from the optimal
solution of the centralized welfare maximization can be used
for constructing real-time bidding functions for pumped hydro
resources. This is a topic that will be explored in more detail
in future research.

VI. CONCLUSIONS AND PERSPECTIVES

Whereas the mitigation of uncertainty in day-ahead unit
commitment has received a significant amount of attention
in the literature, the management of uncertainty in real-
time operations remains a challenging application that has
recently drawn the attention of the research community and
practitioners. This paper proposes a stochastic programming
approach for managing pumped hydro resources, and gains of
up to 1.1% are demonstrated from stochastic dispatch relative
to a deterministic policy that fixes the schedule of pumped
hydro units against a deterministic forecast.

The SDDP algorithm was originally proposed for tackling
multi-stage stochastic linear programs. The authors have fur-
ther attempted to add the commitment of fast-start units to
the model, however the results obtained so far indicate that
the linear relaxation of the problem achieves only marginal
benefits, and further research is required in this direction. Re-
cent advances have extended the scope of the SDDP algorithm
to multi-stage stochastic integer programs [43]. This creates
the possibility for the consideration of unit commitment in
the multi-stage stochastic optimization of real-time operations,
which will be explored in future work.

APPENDIX

A. SDDP Lattice Notation

This section illustrates the notation introduced in section II
by example. Consider the lattice shown in Fig. 7. The lattice
consists of H = 3 stages. Each node of the lattice is indexed
by k ∈ Ωt, which is a possible realization of the random
vector ξTt = (cTt , h

T
t , vec(Tt), vec(Wt)). The set of possible

paths over the lattice up to stage t is denoted as Ω[t], and the
ancestor of a certain ω[t] ∈ Ω[t] is denoted as A(ω[t]) ∈ Ω[t−1].
Referring to the two first stages of the lattice of Fig. 7, Ω1 =
{1}, and Ω2 = {1, 2}, since stage 1 corresponds to a single
outcome and stage 2 corresponds to two possible outcomes.
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Fig. 7: An illustration of the lattice used in the SDDP
algorithm.

The set Ω[2] = {(1, 1), (1, 2)} corresponds to the two possible
paths from stage 1 to stage 2. Each path ω[2] ∈ Ω[2] originates
from the same ancestor, with A((1, 1)) = A((1, 2)) = 1.

Forward passes are illustrated in the left part of the figure,
with x̂

(i)
t corresponding to the realization of a trial decision

for stage t and Monte Carlo sample i. The sample path
is indicated in bold, and corresponds to (1, 2, 3). Backward
passes are illustrated in the right part of the figure, with
π

(i)
t,k corresponding to the dual multipliers that are used for

generating optimality cuts. The dashed box represents the set
of nodes in the lattice which share a common value function
approximation, Ṽt. Note that due to the assumption of serial
independence, all nodes k ∈ Ωt share the same value function
approximation.

B. Pumped Hydro Model Notation

Sets
T : set of time stages
Ωt: set of SDDP lattice nodes in stage t
Ω[t]: set of paths on SDDP lattice from stage 1 to stage t
G: set of generators
N : set of buses
K: set of transmission lines
L: set of loads
PH: set of pumped hydro resources
GR: set of renewable resources

Decision variables
cg: cost of generator g
pg: power production of generator g
lsn: load shedding at bus n
pdg: pumping demand of pumped hydro unit g
ppg: pumping supply of pumped hydro unit g
sg: stored energy of pumped hydro unit g
fk: power flow on line k
psn: production shedding in node n
θn: angle of bus n
yg: renewable supply / renewable forecast ratio for renew-

able generator g
Parameters
FCg: fuel cost of generator g
Ag,m, Bg,m: intercept and slope of segment m describing

fuel cost function of generator g
Ug: on/off status of generator g

Dl: load of consumer l
RFg: renewable energy forecast of renewable generator g
Bk: susceptance of line k
TCk: flow limit of line k
Γd
g: pumping efficiency of unit g

Γd
g: production efficiency of unit g
DMaxg: pumping capacity of pumped hydro unit g
PMaxg: production capacity of pumped hydro unit g
PMing: technical minimum of conventional generator g
RUg/RDg: 15-minute ramp-up / ramp-down rate of gener-

ator g
MTLg: maximum transition limit of generator g
RFg: renewable forecast of renewable generator g
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